
Introduction to Microservices

Lotfi ben Othmane

Monolithic Applications

Front end

• Send username
• Send password
• Send commands
• Set application

session
• Display command

results
• Request logout

Back end

• Accept username
• Verify password
• Create application

session
• Execute

commands
• Close session

2

Front end

Back end

Database

3

Monolithic Applications

The code may be
organized into modules

Front end

Back end

Database

1. Dependency problem - Adding new
features and even bug fixes requires
changes to many components and
redeployment of all the application

2. Interoperability problem -
Organization is based on technology.
Different teams work with different
technologies

4

Monolithic Applications – Cont.

The code may be
organized into modules

3. Scalability problem – Should apply to all
the given application

4. Resilience problem – Fail affects all the
application

5. Consistency problem – Shared data
needs to be consistent using
transactions management protocol.

Front end

Back end

Database

There has been development of architecture styles and
techniques to address the problems
- Web services for interoperability
- Transaction management with EJB
- .Net Framework
- Load balancing
- Etc.

5

Monolithic Applications

6

Web Services

Service provider

Service broker

Requester
SOAP
or
REST

WSDLWSDL

Microservices concept
was first discussed in a
workshop of software
architects, Venice, 2011

Micro-services

First presentation of
microservices by James Lewis:

http://2012.33degree.org/pdf/Ja
mesLewisMicroServices.pdf

7

http://2012.33degree.org/pdf/JamesLewisMicroServices.pdf

An approach to develop a single
application as a suite of small services,
each running in its own process and
communicating with lightweight
mechanisms, often an HTTP resource API.

These services are built around business
capabilities and independently deployable
by fully automated deployment
machinery.

Microservice

https://www.martinfowler.com/articles/microservices.html

8

1. One program should fulfill only one task

2. Programs should be able to work together

3. A universal interface should be used—e.g., text stream

The Unix Philosophy

https://en.wikipedia.org/wiki/Unix_philosophy

9

Solution
1. The boundary is based on business context not technology

• No separation between front end and back end
2. Orchestration is implemented in microservices not in

infrastructure or communication
• Threads and workflows are managed by microservices,

3. Each microservice has a clear interface
4. Each microservice manages its own data
5. Microservices run on independent processes

• Could be deployed independently

Dependency Problem

10

Dependency Problem

Customer

Solution: No separation
between front end and
back end

Order Catalogue
REST REST

HTTP
HTTP

HTTP

11

• One of the main challenges in microservice architecture is to
identify cut-points
• Identify independent components

• Principle 1: Split is based on business capabilities boundaries
• Principle 2: Future changes should require updates to one

microservice—minimize propagation of changes

Dependency Problem

12

13

Dependency Problem

1. Introduction of different data models

2. Mixing of synchronous and asynchronous communication

3. Incorporating additional services

4. Different load scenarios for different aspects of the service

Criteria for Creating New Micro services

Criteria for Creating New Micro services

14

How does microservice style help to coordinate a team?

Team Coordination

15

Web service solution
• Web service addresses this by allowing communication

between web services using SOAP or REST

Microservice solution
• Use lightweight communication mechanisms such as REST

and RPC

Interoperability Problem

16

• Web services support transactions for consistency – May be
needed in some contexts

• Web services run on one process

17

Consistency Problem

Microservices related-characteristics
• Asynchronous communication
• No shared data –or minimum shared
• No management of service states for consistency

Microservices solution
• Compensation operation for inconsistency
• Do not use central system for consistency
Ø Implement logic to detect inconsistency and to trigger

corrective operations

18

Consistency Problem

Potential failure
• Service might have bugs –crash
• Service may become unavailable due to hardware or

network problem
• Service may become slow to respond

Ø Plan for eventual failure
• How should/must the microservice behave in the case of

failure of each of the dependencies?
• Use of circuit breaker to handle failure: monitor

microservices and trigger correction in case of failure

19

Resilience Problem

Scalability Problem

Front end

Load
balancer

Back end Back endBack endBack end

DatabaseDatabase

Scalability for
monolithic applications

20

Scalability Problem

Order

Scalability for
microservices

Order Catalogue
REST REST

HTTP
HTTP

HTTP

Customer

21

1. Organized around business capabilities
2. Products not Projects – developers support the product
3. Smart endpoints and dumb pipes – request-logic-response
4. Decentralized governance – technology choices
5. Decentralized data Management
6. Infrastructure automation – continuous development
7. Design for failure – consider failure
8. Evolutionary design – rewriting a component without

affecting its collaborators

Characteristics of Microservices

22

• Microservices – Flexible software architecture
by Eberhard Wolff
http://microservices-book.com/content.html

• Microservices -- A definition of this new architectural term
by James Lewis and Martin Fowler
https://www.martinfowler.com/articles/microservices.html

Resources

23

We’ve seen how microservices addresses the problems of:
1. Dependencies
2. Interoperability
3. Scalability
4. Resilience
5. Consistency

Summary

24

Thank you.

25

